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QED 3 Radiative Corrections in the Heisenberg Picture 

B. M. Pimentei,' A. T. Suzuki,' and J. L. TomazeUi I 

Received November 22, 1993 

We evaluate the vacuum polarization tensor for three-dimensional quantum 
electrodynamics (QED3) via Heisenberg equations of motion in order to clarify 
the problem arising from the use of different regularization prescriptions in the 
interaction picture. We conclude that the photon does acquire physical mass of 
topological origin when such contribution is taken into account for the photon 
propagator. 

1. INTRODUCTION 

Since the birth of quantum field theory, there has been an enormous 
amount of work done for the purpose of better understanding the diver- 
gences associated with higher-order computations in the perturbative 
scheme. Most of the work in this area has relied on the cleverly devised 
pictographical description that establishes a one-to-one correspondence 
between Feynman graphs and the terms of the time-ordered product 
expansion for the S-matrix "~i la" Dyson. This intuitive approach due to 
Feynman allows one to quickly set up precise rules for the evaluation of the 
relevant contributions order by order in the perturbative series. There is no 
doubt that such a recipe has contributed much in helping physicists in the 
task of evaluating amplitudes and cross sections for different physical 
processes. Yet it becomes clear that this technique carries in itself a built-in 
characteristic inherent to the interaction picture (IP) from which it is 
derived. 

In nonrelativistic quantum mechanics, where one deals with finite 
degrees of freedom, equivalent descriptions of a given system can be 
achieved in different "picture" representations. However, in the case of 
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quantum field theory, where continuously infinite degrees of freedom are 
involved, one cannot in principle ascertain that such an equivalence persists 
(or even exists). Moreover, due to the characteristically divergent nature of 
the quantities associated with Feynman amplitudes, which calls for a 
convenient regularization prescription, that question of equivalence in 
different "picture" representations becomes somehow neglected (or even 
forgotten altogether) amid the hazy intricacies of perturbative calculations. 

A few exceptions exist, though. In a series of papers Kfill6n (I949) 
considered this issue in the context of mass and charge renormalization for 
QED in four dimensions. He tackled the problem using directly the field 
operators in the Heisenberg picture (HP), expanded in a power series in the 
coupling constant, and subsequently used them in the differential field 
equations of motion. He thus obtained an explicit expression for the 
vacuum polarization tensor considering separately the contributions to its 
real and imaginary parts, where only the real part carries a divergence, i.e., 
i t  needs to be regularized. 

In a recent work we have considered radiative corrections in (2 + 1)- 
dimensional QED (Pimentel et al., 1992)--which has not only theoretical 
interest on its own, but also becomes all the more interesting for having 
connections with high-temperature processes in four-dimensional theo- 
r i e s - t o  check the generation of physical mass for the photon at the 
one-loop quantum level. This we did in the standard fashion by employing 
the usual Feynman rules of the IP, applying a gauge-invariant construct 
after analytical regularization to deal with ultraviolet singularities (Breiten- 
lohner and Mitter, 1968). There we obtained a physical mass for the 
photon at the one-loop quantum level, in contrast to the Pauli-Villars 
regularization, where no such mass is generated. 

Here we are going to use K/ill6n's formalism (K/illen, 1972) to evaluate 
the corresponding vacuum polarization tensor for QED3, by imposing a 
priori conservation of charge, and confront the result with ours previously 
obtained (Pimentel et al., 1992). Some illuminating insights emerging from 
the use of HP are discussed in our concluding remarks. 

2. THE TRANSVERSE VACUUM POLARIZATION TENSOR 

We can define the vacuum polarization tensor H~(k) in different ways. 
For example, let us consider an external field ~,~t  acting on the vacuum. 
There will be an induced current in the vacuum given by 

(O[fl'(x)[O) = f dx'  e2rF'V(x - x')~g:Xt(x ") ( l) 

The kernel H~v(x - x') characterizes the linear response of the vacuum. We 
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realize that the vacuum polarization tensor is the Fourier transform of this 
kernel. Thus, in three dimensions, we have 

I I .v(x  - x ' )  - (2r0 3 d3k eik( . . . .  ')II.v(k ) (2) 

The above definition will necessarily have the transverse properties. It 
follows from charge conservation that 

3j~,(x) _ 0 (3) 
ax u 

or, using equations (1) and (2), 

k~II~v = 0 (4) 

A covariant second-rank tensor II~,v(k) can be built from covariant objects 
like ku, guy and Eu,~ such that equation (4) is satisfied. In this sense, the 
vacuum polarization tensor ought to have the form 

l-I,,v(k) = G(k2)kukv + H(k2)&,~ + imq, v~,k~'lI{2)(k 2) (5) 

Unlike the four-dimensional case, Iluv(k ) has an antisymmetric piece due to 
the Levi-Civita symbol E~=. From equation (4) we have 

( FI~(k) = Hm(k 2) g.v k2 ] + imq,~k~II(2)(k 2) (6) 

where we have defined 

l-lO)(k2) =- - k 2 G ( k  2) (7) 

If we contract IIuv(k) with gU~ and c u~p, we obtain, respectively, 

nm(k 2) = ~ n~(k) (8) 

I1(2)(k2) = 27n E"~"II~'~(k) (9) 

with 

n~(k) -= g~'n.v(k) (10) 

3. E V A L U A T I O N  OF H ~ ( k )  IN THE HEISENBERG PICTURE 

The vacuum polarization tensor in the HP is given by 

Iluv(k) = 2 ( 1 )  2 .t][ d3pl d3p2 a(k -- p| q- P2) 

x Tr{y~(p, + m)yv(P2 + m)}[I1- + H +1 (ll)  
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where 

I 1 
H -  - 6 ( m 2 - p ~ )  P V m z _ p  ~ _ ine(p2)~(m2-pZ~)] (12) 

[ , r l  § -~(m2-p2,) PVm2_p-----~+irce(p,)6(m2-p~) ] (13) 

In the above expressions, PV denotes the principal value, while e(p) stands 
for the sign function 

P (14) = 

For physical reasons, i.e., in order to check the mass generation for the 
photon field (Pimentel et al., 1992), let us first calculate the antisymmetric 
part of  H~,(k). After performing the trace and the P2 integration in 
equation (11), we substitute the resulting expression for 1-I,v(k) into equa- 
tion (9). So, II~2)(k 2) becomes 

I'[t2)(k 2) = ~ e  1-I C2) + i J m  l"I (2) (15) 

with 

~ e  l-I t2) -= f E  1 1 d3 p 6(m2 p 2 ) P V m 2 _ ( p _ k )  2 
(2~) 2 

'1 + 6[ m2 -- (P -- k)2]PVm2 _p2 (16) 

1 fd3pS(m2_p2)  6[m2_( p _ k ) 2 ] { t ( p ) _ e ( p _ k ) }  (17) J m 1-I (2) - - 4--~ 

Making use of representations 

~(a)=lf?ood,oe'~176 (18) 

P V = 2ii do e it~ ( 1 9 )  
o o  

it follows that 

P V + = ~ do~ m d e  e ,i~ + (1 - , ) b ]  (20) 

From equation (20), after a shift p ~ p  + ( 1 - o t ) k ,  we can rewrite 
equation (16) for the real part of  II(2)(k 2) as 

i olLf ~ e  rI (2) = (2n) 3 dot do9 to d3p ei~M2_p2) (21) 
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where 

M ~ =- m z - or( 1 - e ) k  z (22) 

We can easily compute the p and co integrals in equation (21) with the 
aid of  representations 

1 (--i) I+:" fo ~ (A +ir  1+~= F(1 + 2 ~  dxx; ' e iX(A+i~  (23) 

I (i) l+;" fo ~ (A - iE) i + ;. = F( t + )~) dx  x ~" e -i.~A - ,,) (24) 

Hence, substituting equation (22) for M 2, we finally obtain 

~Re l_iC2) = 1 fol d0~ [m2 _ 0r - -  4--n _ ~ ) k  2] ,/2 ( 2 5 )  

The imaginary part of  II(2)(k 2) is given by equation (17), i.e., 

:mH~2)=-lfd2pf dp~ 

x 6 ( m 2 - p 2 + p 2 + 2 p o k o - 2 p . k - k 2  ) ~ o - k o t J  

Integration with respect to Po in the above expression in a coordinate 
system where k = 0 leads to 

:m H'2) = -~ fo~ da (m2,,la),i2 6(a-k---~ + m2)A (27) 

where 

(m2 + a) '/2 + k o (m2 + a) l/2 - ko 

A = }(m2 + a),/2 + ko t - t(m 2 + a),/2 _ kot (28) 

We notice that for the physical sector k 2 <  4rn 2 

~r m H t2) = 0 (29) 

From the covariance of  l-I.v(k), equation (29) remains valid in an arbitrary 
frame of  reference. 

We thus verify from equations (25) and (29) that for k 2 =  0, 

1 
W ( 0 )  = - - -  (30)  

4rim 

We emphasize that in all these calculational steps, the H~Z)(k z) remains 
f ini te .  Hence, the conclusion we arrive at with the use of  HP  is that the 
1-PZ)(k 2) term does not  need to be regularized at any step in its calculation, 
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since it is finite throughout. And this is our key result: Even though we do 
not need to use any regularization scheme to compute rF2)(k2), it does not 
vanish in the limit k 2 ---}0, so that it definitely contributes to the dislocation 
of the pole of the photon propagator, i.e., it does generate photon mass at 
the one-loop quantum level. 

On the other hand, rF~)(k 2) diverges. In other words, in the HP, all the 
divergence of the vacuum polarization tensor, equation (6), is carried by 
the H~ 2) term. Therefore, for this term we necessarily must make use o f  
a regularization procedure to deal with it. Such can be chosen among 
several known gauge-invariant regularization procedures, e.g., the one we 
used in our previous work (Pimentel et al., 1992). The final result for 
HO)(k2), after regularization, is 

k: fo I 1 H(1)(k2) = ~ e  H(O(k2) = ~-~ dct~(1-OO[m2_ct( l_ct)kZ]U2 (31) 

Therefore, at k 2= 0 we have 

Ho)(0) = 0 (32) 

From the above results, equations (30) and (32), one can see clearly 
that the mass generation for the photon field just comes from the ll(2)(k 2) 
t e r m ~ a n d  solely from it. This is the reason why we omit most of the 
details for the calculation of l-I(~ 

4. DISCUSSION 

We would like to make some clarifying comments in addressing some 
of the issues pertaining to the Abelian gauge theories in three dimensions. 

The antisymmetric piece of the vacuum polarization tensor 

H~(k)=(g~,v ~4~)I'F')(k2) - ime~k~H(2)(k 2) 

when properly taken into account, gives rise to a corrected gauge boson 
propagator 

where 

- i  { k.k~ rI~2)(k :) k ~} 
D~v(k) = k2 _--~(k2 ) g~v k 2 im 1 - II~ 2 E~= -~ 

ia kuk~ 
k 4 + iOk 2 

m2{rF:~(k2)} 2 
H(k 2) = IIO)(k 2) + 

1 - l'I~ 2 
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a is the gauge fixing parameter. When 

1-I")(0) = 0 

and 

l-F2)(0) :/: 0 

it can be regarded as the propagator for a gauge boson of square topological 
mass 

(e2/4n) 2 
#2 _ 17(0) = 

1 - e2/48nm 

Thus, the radiatively induced mass for the gauge boson has a topological 
origin, and corresponds to the addition of a topological mass counterterm 

E r,,v,% (33) 

to the unrenormalized Lagrangian density, also known as the Chern- 
Simons term. 

Under gauge transformations, 

A~ ~A~ + c~,~ 

I//---', e/et~l]/ 

the renormalized Lagrangian density of spinor quantum electrodynamics in 
three dimensions (QED3), including the Chern-Simons term (33), changes 
by a total derivative; 

So, the Heisenberg equations of motion remain invariant. 

5. CONCLUSION 

We have considered an alternative approach to the vacuum polariza- 
tion process in QED3, where the interacting field operators satisfy Heisen- 
berg equations of motion. As a consequence of equation (30), mass is 
generated for the photon at this level of radiative correction, since the 
antisymmetric part of the vacuum polarization tensor modifies the original 
pole in the photon propagator at k2= 0 (Deser et al., 1982). This result is 
in agreement with the one obtained in the IP, where the corresponding 
Feynman integral is regularized by means of the analytic regularization 
method, constrained to preserve gauge invariance (Pimentel et al., 1992). 
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It must be emphasized that while 1-l(l)(k 2) diverges in the ultraviolet 
(UV) region, l-l<2)(k 2) remains finite and well defined along the intermediate 
steps of the present calculation in the HP. In comparison, in the IP, the 
Feynman amplitude for the photon self-energy is also UV-divergent. How- 
ever, 1-I~2)(0) may vanish or not, depending on the choice of regularization 
(Deser et al., 1982; Martin, 1990; Alverez-Gaum6 et aL, 1990; Pimentel et 
al., 1992) for the amplitude as a whole. This ambiguity in the physical 
result is then removed if we work in the HP, imposing current conserva- 
tion. 
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